Matemáticas Especiales II Clase 14 Ecuación de Legendre

Polinomios de Legendre

Octavio Miloni

Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata

Ecuación de Legendre Polinomios de Legendre

- Ecuación Diferencial de Legendre
- Soluciones de la Ec. de Legendre
- Polinomios de Legendre. Propiedades
- Fórmula de Rodrigues
- Función Generatriz
- Algunas Aplicaciones

La Ecuación Diferencial de Legendre.

La Ecuación. Ecuación Diferencial de Legendre se escribe

$$(1-x^2)y''-2xy'+n(n+1)y=0, \qquad n\in\mathbb{N}$$

Podemos notar que x = 0 es un punto ordinario

Entonces, podemos proponer como solución

$$y(x) = \sum_{\ell=0}^{\infty} c_{\ell} x^{\ell}$$

Donde esperaremos convergencia en |x| < 1 (por qué?)

Recurrencia de los coeficientes

Sustituyendo la propuesta en la ecuación diferencial, y reagrupando adecuadamente los coeficientes obtenemos la relación entre los coeficiente

$$c_{\ell+2} = rac{[\ell(\ell+1) - n(n+1)]}{(j+1)(j+2)} c_{\ell}$$

La solución general será, entonces,

$$y(x) = c_0 \sum_{par}(x) + c_1 \sum_{impar}(x)$$

Tipos de solución

- n par. $\sum_{par}(x)$ polinomio y $\sum_{impar}(x)$ serie infinita
- *n* impar. $\sum_{impar}(x)$ polinomio y $\sum_{par}(x)$ serie infinita

La solución polinómica son los Polinomios de Legendre.

En todos los casos, $P_n(1) = 1$

Los primeros polinomios

n	$P_n(x)$
0	1
1	X
2	$\frac{1}{2}(x^2-1)$
3	$\frac{1}{2}(5x^3-3x)$
4	$\frac{1}{8}(35x^4-30x^2+3)$
5	
6	$\frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$
7	$\frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$
8	$\frac{1}{128}(6435x^8 - 12012x^6 + 6930x^4 - 1260x^2 + 35)$
9	$\frac{1}{128}(12155x^9 - 25740x^7 + 18018x^5 - 4620x^3 + 315x)$

Propiedades

Fórmula de Rodrigues.

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

II. Relación de Recurrencia.

$$(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)$$

III. Ortogonalidad.

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn}$$

IV. Función Generatriz.

$$\frac{1}{\sqrt{1+t^2-2xt}} = \sum_{n=0}^{\infty} P_n(x) t^n$$

$$V. P_n(-x) = (-1)^n P_n(x)$$

Aplicación: Potencial Gravitatorio

Consideremos una partícula de masa m ubicada en el punto $P_0(x_0, y_0, z_0)$. El radio vector correspondiente a la partícula será \vec{r}_0 . Consideremos el potencial gravitatorio en el punto P(x, y, z). El potencial gravitatorio en el punto P, considerado como vector, será

$$\phi(\vec{r}) = -G \frac{m}{|\vec{r} - \vec{r}_0|} = \phi(\vec{r}) = -G \frac{m}{\sqrt{\langle \vec{r} - \vec{r}_0 | \vec{r} - \vec{r}_0 \rangle}}$$

Entonces, llamando $r = |\vec{r}|$, $r_0 = |\vec{r}_0|$ obtenemos

$$\phi(\vec{r}) = -G \frac{m}{\sqrt{r^2 + r_0^2 - 2r \, r_0 \, \cos(\theta)}}$$

Si $r_0 < r$ y llamando $\alpha = r/r_0$ podemos escribir

$$\phi(\vec{r}) = -G \frac{m}{r\sqrt{1 + \alpha^2 - 2\alpha \cos(\theta)}} = -G \frac{m}{r} \sum_{\ell=0}^{\infty} P_{\ell}[\cos(\theta)] \alpha^{\ell}$$

Polinomios Asociados de Legendre

Ecuación asociada de Legendre.

$$(1-x^2)y''-2xy'+\left[\ell(\ell+1)-\frac{m^2}{1-x^2}\right]y=0,$$

Notemos que coincide con la ecuación de Legendre, para m=0. La solución polinómica tiene una fórmula de Rodrigues

$$P_{\ell}^{m}(x) = (-1)^{m} (1 - x^{2})^{m/2} \frac{d^{m}}{dx^{m}} [P_{\ell}(x)]$$

En teoría del potencial, al resolver la ecuación de Laplace en coordenadas esféricas, nos encontraremos con la ecuación asociada de Legendre.

Relación de ortogonalidad. Los polinomios asociados de Legendre, satisfacen la relación de ortogonalidad

$$\int_{-1}^{1} P_{k}^{m} P_{\ell}^{m} dx = \frac{2(\ell+m)!}{(2\ell+1)(\ell-m)!} \ \delta_{k,\ell}$$

Bibliografía Utilizada y Recomendada

- Kreider, Donald L. Kuller, Robert G. Ostberg, Donald R. Perkins, Fred W. Introducción al Análisis Lineal, Vol II Ed. Fondo Educativo Interamericano (1966)
- Naón, Carlos; Rossignoli, Raúl; Santangelo, Eve Ecuaciones Diferenciales en Física, Ed. EDULP (2014)
- Capelas de Oliveira, Edmundo. Funções Especiais com Aplicações,
 Ed. Livraria da Física. (2005)
- Whittaker, E. T. and Watson, G. N. Modern Analysis, Ed. Cambridge University Press (1952)
- Spiegel, Murray. Fourier Analysis, Schaum's Series, Ed. Mc Graw Hill (1974)