Matemática Avanzada

Clase Nro. 20

Octavio Miloni

Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata

Ecuación de Legendre Polinomios de Legendre

- Ecuación Diferencial de Legendre
- Soluciones de la Ec. de Legendre
- Polinomios de Legendre. Propiedades
- Fórmula de Rodrigues
- Función Generatriz
- Algunas Aplicaciones

La Ecuación Diferencial de Legendre.

La Ecuación. Ecuación Diferencial de Legendre se escribe

$$(1-x^2)y''-2xy'+n(n+1)y=0, \qquad n\in\mathbb{N}$$

Podemos notar que x = 0 es un punto ordinario

Entonces, podemos proponer como solución

$$y(x) = \sum_{\ell=0}^{\infty} c_{\ell} x^{\ell}$$

Donde esperaremos convergencia en |x| < 1 (por qué?)

Recurrencia de los coeficientes

Sustituyendo la propuesta en la ecuación diferencial, y reagrupando adecuadamente los coeficientes obtenemos la relación entre los coeficiente

$$c_{\ell+2} = rac{[\ell(\ell+1) - n(n+1)]}{(j+1)(j+2)} c_{\ell}$$

La solución general será, entonces,

$$y(x) = c_0 \sum\nolimits_{par}(x) + c_1 \sum\nolimits_{impar}(x)$$

Tipos de solución

- n par. $\sum_{par}(x)$ polinomio y $\sum_{impar}(x)$ serie infinita
- n impar. $\sum_{impar}(x)$ polinomio y $\sum_{par}(x)$ serie infinita

La solución polinómica son los Polinomios de Legendre.

En todos los casos, $P_n(1) = 1$

Los primeros polinomios

n	$P_n(x)$
0	1
1	X
2	$\frac{1}{2}(x^2-1)$
3	$\frac{1}{2}(5x^3-3x)$
	$\frac{1}{8}(35x^4-30x^2+3)$
5	$\frac{1}{8}(63x^5-70x^3+15x)$
6	$\frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$
7	$\frac{10}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$
8	$\frac{1}{128}(6435x^8 - 12012x^6 + 6930x^4 - 1260x^2 + 35)$
9	$\frac{1}{128}(12155x^9 - 25740x^7 + 18018x^5 - 4620x^3 + 315x)$

Propiedades

1. Fórmula de Rodrigues.

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

II. Relación de Recurrencia.

$$(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)$$

III. Ortogonalidad.

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn}$$

IV. Función Generatriz.

$$\frac{1}{\sqrt{1+t^2-2xt}} = \sum_{n=0}^{\infty} P_n(x) t^n$$

V.
$$P_n(-x) = (-1)^n P_n(x)$$

Aplicación: Potencial Gravitatorio

Consideremos una partícula de masa m ubicada en el punto $P_0(x_0, y_0, z_0)$. El radio vector correspondiente a la partícula será \vec{r}_0 . Consideremos el potencial gravitatorio en el punto P(x, y, z). El potencial gravitatorio en el punto P, considerado como vector, será

$$\phi(\vec{r}) = -G \frac{m}{|\vec{r} - \vec{r}_0|} = \phi(\vec{r}) = -G \frac{m}{\sqrt{\langle \vec{r} - \vec{r}_0 | \vec{r} - \vec{r}_0 \rangle}}$$

Entonces, llamando $r=|\vec{r}|,\;r_0=|\vec{r}_0|$ obtenemos

$$\phi(\vec{r}) = -G \frac{m}{\sqrt{r^2 + r_0^2 - 2r \, r_0 \, \cos(\theta)}}$$

Si $r_0 < r$ y llamando $\alpha = r/r_0$ podemos escribir

$$\phi(\vec{r}) = -G \frac{m}{r\sqrt{1 + \alpha^2 - 2\alpha \cos(\theta)}} = -G \frac{m}{r} \sum_{\ell=0}^{\infty} P_{\ell}[\cos(\theta)] \alpha^{\ell}$$

Polinomios Asociados de Legendre

Ecuación asociada de Legendre.

$$(1-x^2)y''-2xy'+\left[\ell(\ell+1)-\frac{m^2}{1-x^2}\right]y=0,$$

Notemos que coincide con la ecuación de Legendre, para m=0. La solución polinómica tiene una fórmula de Rodrigues

$$P_{\ell}^{m}(x) = (-1)^{m} (1 - x^{2})^{m/2} \frac{d^{m}}{dx^{m}} [P_{\ell}(x)]$$

En teoría del potencial, al resolver la ecuación de Laplace en coordenadas esféricas, nos encontraremos con la ecuación asociada de Legendre.

Relación de ortogonalidad. Los polinomios asociados de Legendre, satisfacen la relación de ortogonalidad

$$\int_{-1}^{1} P_{k}^{m} P_{\ell}^{m} dx = \frac{2(\ell+m)!}{(2\ell+1)(\ell-m)!} \ \delta_{k,\ell}$$

4 D > 4 D > 4 E > 4 E > E 9 Q C

Ecuación de Bessel Funciones de Bessel

- Ecuación Diferencial de Bessel de orden p
- Soluciones de la Ec. de Bessel
- Propiedades
- Función Generatriz
- Representación Integral
- Algunas Aplicaciones a la Física.

La Ecuación Diferencial de Bessel de Orden p

La Ecuación. Ecuación Diferencial de Bessel se escribe

$$x^{2}y''(x) + xy'(x) + (x^{2} - p^{2})y(x) = 0,$$
 $p > 0$

Podemos notar que x = 0 es un punto singular regular

Entonces, podemos proponer como solución

$$y(x) = x^r \sum_{\ell=0}^{\infty} c_{\ell} x^{\ell}$$

Y la ecuación indicial asociada será:

$$r^2 - p^2 = 0, \quad \rightarrow \quad r = \pm p$$

Entonces, una primera solución será

$$y_1(x) = x^p \sum_{\ell=0}^{\infty} c_{\ell} x^{\ell}, \quad p \ge 0$$

Método de Frobenius. Sustitución en la Ec. Diferencial

Proponiendo como solución, $y=\sum_{\ell=0}^{\infty}c_{\ell}x^{\ell+p}$ en la ecuación diferencial tenemos

$$x^{2}y'' = \sum_{\ell=0}^{\infty} (\ell+p)(\ell+p-1)c_{\ell}x^{\ell+p} = p(p-1)c_{0}x^{p} + (p+1)pc_{1}x^{p+1} + \sum_{\ell=2}^{\infty} (\ell+p)(\ell+p-1)c_{\ell}x^{\ell+p}$$

0

$$xy' = \sum_{\ell=0}^{\infty} (\ell+\rho)c_{\ell}x^{\ell+\rho} = \rho c_{0}x^{\rho} + (\rho+1)c_{1}x^{\rho+1} + \sum_{\ell=2}^{\infty} (\ell+\rho)c_{\ell}x^{\ell+\rho}$$

0

$$(x^{2} - \rho^{2}) y = \sum_{\ell=0}^{\infty} c_{\ell} x^{\ell+p+2} - \rho^{2} \sum_{\ell=0}^{\infty} c_{\ell} x^{\ell+p} = -\rho^{2} c_{0} x^{p} - \rho^{2} c_{1} x^{p+1} + \sum_{\ell=2}^{\infty} \left[c_{\ell-2} - \rho^{2} c_{\ell} \right] x^{\ell+p}$$

Reemplazando en la ecuación diferencial, y dividiendo por x^p tenemos

$$(2p+1)c_1x + \sum_{\ell=2}^{\infty} [\ell(2p+\ell)c_{\ell} + c_{\ell-2}]x^{\ell} = 0$$

(El término de orden x^0 se anula al reemplazar, con lo que c_0 es arbitrario)

Recurrencia de los coeficientes

A partir de lo obtenido, tenemos que

$$c_1 = 0,$$
 $c_{\ell+2} = -\frac{c_{\ell}}{\ell(2\rho + \ell)}$

Entonces, podemos escribir

$$c_{1} = c_{3} = c_{5} = \dots = 0$$

$$c_{2} = -\frac{c_{0}}{2(2p+2)} = -\frac{c_{0}}{2^{2}(p+1)}$$

$$c_{4} = -\frac{c_{2}}{4(2p+4)} = \frac{c_{0}}{2 \cdot 4(2p+2)(2p+4)} = \frac{c_{0}}{2^{4} \cdot 2! \cdot (p+1)(p+2)}$$

$$\vdots = \vdots$$

$$c_{2\ell} = (-1)^{\ell} \frac{c_{0}}{2^{2\ell}\ell!(p+1)(p+2)\cdots(p+\ell)}$$

Octavio Miloni (Facultad de Cs. Astronómica Matemática Avanzada Clase Nro. 20

La función de Bessel de orden p

Como vimos, la solución de la ecuación de Bessel de orden $p \ge 0$ se puede escribir, en términos generales

$$\sum_{\ell=0}^{\infty} (-1)^{\ell} \frac{c_0}{2^{2\ell} \ell! (p+1)(p+2) \cdots (p+\ell)} x^{2\ell+p}$$

Notemos además que, utilizando la función Gamma

$$(p+1)(p+2)\cdots(p+\ell)=rac{\Gamma(p+\ell+1)}{\Gamma(p+1)}$$

Como c_0 es arbitrario, si escogemos $c_0 = \frac{1}{2^p \Gamma(p+1)}$ tenemos la expresión

$$J_{p}(x) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell! \, \Gamma(p+\ell+1)} \left(\frac{x}{2}\right)^{2\ell+p}$$

Función de Bessel de orden p de primera clase

Diferentes tipos de Solución

El método de Frobenius establece 3 casos posibles, respecto a la solución de la ecuación indicial.

- a. $r_1 \neq r_2 \operatorname{con} r_2 r_1 \notin \mathbb{Z}$
- b. $r_1 = r_2$
- c. $r_1 \neq r_2 \operatorname{con} r_2 r_1 \in \mathbb{Z}$

Para la ecuación de Bessel, tenemos que $r_{1,2}=\pm p$, con lo cual los casos son

- a. $p \neq 0$ con $2p \notin \mathbb{Z}$
- b. p = 0
- c. $p \neq 0$ con $2p \in \mathbb{Z}$

Caso $p \neq 0$, $2p \notin \mathbb{Z}$

Para este caso, las dos soluciones linealmente independientes de la ecuación de Bessel serán

$$J_{p}(x) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell! \, \Gamma(p+\ell+1)} \left(\frac{x}{2}\right)^{2\ell+p}$$

$$J_{-p}(x) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell! \, \Gamma(-p+\ell+1)} \left(\frac{x}{2}\right)^{2\ell-p}$$

Con lo que la solución general de la Ecuación de Bessel, será

$$y(x) = c_1 J_p(x) + c_2 J_{-p}(x), \qquad p \neq 0, \ 2p \notin \mathbb{Z}, \quad x > 0$$

Observación: Este caso contiene a p entero

4□ > 4□ > 4 = > 4 = > = 900

El caso p = 0

El caso p = 0, admite como solución

$$J_0(x) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{(\ell!)^2} \left(\frac{x}{2}\right)^{2\ell}$$

Y debemos buscar la segunda solución a la ecuación.

Según el método de Frobenius, podemos buscar la segunda solución en la forma

$$K_0(x) = \sum_{\ell=1}^{\infty} b_{\ell} x^{\ell} + J_0(x) \log(x), \qquad x > 0$$

Además, para este caso, la ecuación diferencial se reduce a

$$xy''(x) + y'(x) + xy(x) = 0$$

Ajustando los coeficientes, se obtiene

$$K_0(x) = \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1}}{(\ell!)^2} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + + \frac{1}{\ell}\right) \left(\frac{x}{2}\right)^{2\ell} + J_0(x) \log(x)$$

Caso $p \neq 0$, $2p \in \mathbb{Z}$

Nuevamente, aplicando los resultados provenientes del método de Frobenius, la segunda solución linealmente independiente con $J_p(x)$ será de la forma

$$K_p(x) = \sum_{\ell=0}^{\infty} b_\ell x^{\ell+p} + c J_p(x) \log(x), \quad c = \text{constante}, \quad x > 0$$

Para obtener los coeficientes y la constante c debemos sustituir en la ecuación diferencial.

La obtención de la expresión es engorrosa y la dejamos para la práctica!

Propiedades

Derivación.

$$\frac{d}{dx} [x^p J_p(x)] = x^p J_{p-1}(x)$$

$$\frac{d}{dx} [x^{-p} J_p(x)] = -x^{-p} J_{p+1}(x)$$

Recurrencia.

$$x J_{p+1}(x) - 2p J_p(x) + x J_{p-1}(x) = 0$$
$$J_{p+1}(x) + 2 J_p'(x) - J_{p-1}(x) = 0$$

Función Generatriz.

$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = \sum_{\ell=-\infty}^{\infty} J_{\ell}(x) t^{\ell}$$

Forma Integral.

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos[n\theta - x \sin(\theta)] d\theta$$

◆ロト ◆昼 ト ◆ 差 ト ◆ 差 ・ 夕 へ ②

Función de Bessel de primera clase de orden semientero

Consideremos p = 1/2 Tenemos que

$$J_{1/2} = \frac{\sqrt{x}}{\sqrt{2}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell! \Gamma(\ell + \frac{3}{2})} \left(\frac{x}{2}\right)^{2\ell}$$

Podemos notar que

$$\Gamma\left(\ell+\frac{3}{2}\right) = \Gamma\left(\frac{3}{2}\right) \left[\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2} \cdots \frac{2\ell+1}{2}\right]$$

Reemplazando en la función de Bessel y agrupando convenientemente, se obtiene

$$J_{1/2}(x) = \frac{1}{\sqrt{2x}\Gamma(3/2)}\sin(x) = \sqrt{\frac{2}{\pi x}}\sin(x)$$

4□ > 4□ > 4 = > 4 = > = 90

Aplicación: Ecuación de Laplace en coor. Cilíndricas

Supongamos una función ${\bf u}$ que depende de las variables ρ y z (no depende de la variable angular). El laplaciano se puede escribir

$$\nabla^2 \mathbf{u} = \frac{\partial^2 \mathbf{u}}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \mathbf{u}}{\partial \rho} + \frac{\partial^2 \mathbf{u}}{\partial z^2} = 0$$

Mediante el Método de Separación de variables se propone

$$\mathbf{u} = R(\rho) \cdot Z(z)$$

Entonces, reemplazando en la ecuación obtenemos el sistema

$$R''(\rho) + \frac{1}{\rho}R'(\rho) + \lambda^2 R(\rho) = 0$$
 Bessel de orden cero!!

$$Z''(z) - \lambda^2 Z(z) = 0$$

Octavio Miloni (Facultad de Cs. Astronómica Matemática Avanzada Clase Nro. 20

Bibliografía Utilizada y Recomendada

- Kreider, Donald L. Kuller, Robert G. Ostberg, Donald R. Perkins,
 Fred W. Introducción al Análisis Lineal, Vol II Ed. Fondo Educativo
 Interamericano (1966)
- Bowman, Frank Introduction to Bessel Functions, Ed. Dover (1958)
- Capelas de Oliveira, Edmundo. Funções Especiais com Aplicações,
 Ed. Livraria da Física. (2005)
- Whittaker, E. T. and Watson, G. N. Modern Analysis, Ed. Cambridge University Press (1952)